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INTRODUCTION

Consider a production function yi = g(xi,8) + fi'

i=1,2,...,N, where Yi = output for observation i,

x i = vector of inputs for observation i, $ = vector

of parameters, ei error term for observation i. The

"stochastic frontier" (also called "composed error")

model, introduced by Aigner, Lovell, and Schmidt (1977)

and Meeusen and van den Broeck (1977), postulates that

the error term Ei is made up of two independent

components:

f i =v. - u (1)

2

where vi -N(O,a ) is a two-sided error term

representing the usual statistical noise found in any

relationship, and ui > 0 is a one-sided error term

representing technical inefficiency. Note tht ui

measures technical inefficiency in the sense that it

measures the shortfall of output (yi) from its

maximal possible value (g(xi,8)+vi).

When a model of this form is estimated, one readily

obtains residuals e Yi g(x which can be

k/JV2.s -1%
regarded as estimates of error terms ei. However, I

the problem of decomposing such an estimate into /

separate estimates of the components vi and ui has

/
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remained unsolved for some time. Of course, the

average technical inefficiency--the mean of the

distribution of the ui--is easily calculated. For

example, in the half-normal case (ui distributed as

a2
the absolute value of a N(O,u2) variable). The mean

technical inefficiency is a and this can be

evaluated given one's estimate of au, as in Aigner,

Lovell, and Schmidt (1977) or Schmidt and Lovell

(1979). Or average technical inefficiency can be

estimated by the average of the e i . But it is also

clearly desirable to be able to estimate the technical

inefficiency ui for each observation.

Intuitively, this should be possible because ei

= vi - ui can be estimated and obviously contains

information on ui. In this paper, we proceed by

considering the conditional distribution of ui given

Ei . This distribution contains whatever information

ei yields about ui . Our estimate of ui is simply

the mean of this conditional distribution, evaluated at

Ei = ei. The variance of the conditional distribu-

tion is also calculated, since it indicates how close

realizations of the conditional distribution are likely

to be to the conditional mean. The conditional means

and variances are calculated for the commonly assumed

cases of half-normal and exponential ui, resulting in

easily evaluated expressions.
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THE HALF-NORMAL CASE

We consider the two-part disturbance given in (1)

above, with v. N(O,02) and u. - N(O0,a2) 1. For

notational simplicity, we will drop the observation

subscript (i) throughout this section.

We define 02 02 + a2, -a 02 e/ 2 IY = a2a2 a 2

U V U U v

Then our main result (proved in the appendix) is the

following:

THEOREM 1: The conditional distribution of u

2given e is that of a N(w*,*) variable tcuncated

at zero.

To estimate u, given an estimate e of e, it is natural to

pick the mean of the conditional distribution, evaluated at

'N 2e. The mean of a N(u*,*) variable truncated at zero is

(Johnson and Kotz (1970), pp. 81-83):

E(uje) = I,[l-F(-l,/O,)] + a~f(-L,/o,), (2)

where f and F represent the standard normal density and

cdf, respectively. But note that

= e/a, (3)

with A- Gu/Uv; this is the same point at which f

and F are evaluated in calculating the likelihood

function and its derivatives (Aigner, Lovell, and

Schmidt (1977, pp. 26-27)). Thus, with simple algebra,

we obtain

Elule) 0* [1I-FWA /a) (4)
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Replacing E by t gives the desired estimate of u.

Incidentally, it is easily verified that the expres-

sion in (4) is non-negative, and monotonic in e.

The estimate of u obtained by evaluating (4) atE

contains two types of variance. The first is

ordinary sampling error, due to the variability of E

as an estimate of e (which in turn is due to the

variability of 8 as an estimate of 8). This

variability disappears asymptotically and can,

therefore, be ignored for large enough sample sizes.

However, the estimate in (4) still contains the

variance of the conditional distribution, which is

independent of sample size and should not be ignored;

it is a reflection of the obvious fact that E con-

tains only imperfect information about u. The

conditional variance is simply the variance of a

N(*,,O2 ) variable truncated at zero, which is

21, jA f ('X /qfeXa ) ]2___

Var(ule ) = 2 0 l-/f(e Xl)- 1 (efl) 1 )

Thus, (5) gives a measure of the variability of the

estimate (4), for sample sizes large enough to ignore

the sampling error. Of course, since we are dealing

with a truncated normal distribution, we should be

careful in our interpretation of standard errors;
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confidence intervals for u might better come from the

conditional distribution (Theorem 1) itself than from

consideration of u relative to its standard error.

THE EXPONENTIAL CASE

This case is identical to the half-normal case, except

that now the technical inefficiency error term u is

assumed to follow the one-parameter exponential

distribution with density

f(u) = exp (-u/a u)/a u  (6)

Our results are similar to those for the half-normal

case. Define A = E/a v + a VAu. Then we have the

following result, proved in the appendix:

THEOREM 2: The conditional distribution of u

given E is that of a N(-a A, a 2) variable,v v

truncated at zero.

The mean and variance of this distributon are therefore

exactly as given in (4) and (5) if we just replace a*

by ov and replace 4X/o by A. As in the half-normal
'N

case, these would be evaluated at E = .

AN EXAMPLE

Schmidt and Lovell (1980) estimated a system consisting

of a stochastic frontier production function and
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first-order conditions for cost minimization, based on

a sample of 111 steam-electric generating plants. The

estimates on which our calculations are based are those

reported in the first column of table 1 of Schmidt and

^N2 'N2Lovell. In particular, note that 2 = .014452, 2

= .003261, and that the estimated average technical

inefficiency (mean of u) is .09592, indicating about

9.6 percent technical inefficiency.

We have calculated = E(ul for each observation,

based on (4) since estimation assumed half-normal u, as

well as the variance of this estimate based on (5). We

will not present results for all 111 observations, but

rather, point out a few things of interest. The mean

of the u's is .08387, which is in the same ballpark as

the .09592 reported above and as the mean of -.07433

for the '"s. The smallest u (most technically effi-

cient plant) was .01658, with a standard error of

.01534, based on E = .15891. This is a modest outlier,

with e about 2.75 standard deviations from the mean;%

(The other observations had u under .02 also.) The

most technically efficient observations can be

characterized as having high outputs (the two most

efficient plants have the second and third largest

outputs in the sample), low capital stocks and high
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levels of fuel consumption and labor usage. Their

level of allocative inefficiency (see Schmidt and

Lovell (1979)) is below average, though not strongly

so. On the other hand, the largest u (most technically

inefficient plant) was .37156, with a standard error of

.05105, based on e = -.45540. This is a fairly large

outlier, in the sense that ';is almost 4 standard

deviations from the mean e ; but one other observation

had an almost identical value of u ande. The most

technically inefficient observations have rather

average outputs but higher than average uses of

capital, fuel, and labor. They also had slightly above

average levels of allocative inefficiency.

CONCLUSIONS -

"1In this paper, we-- -hte --proposd a method AW separating
,A

the error term of the stochastic frontier model int

its two components for each observation. This enables

one to estimate the level of technical inefficiency for

each observation in the sample, and largely removes

what had been viewed as a considerable disadvantage of

the stochastic frontier model relative to other models

(so-called deterministic frontiers) for which technical

inefficiency was readily measured for each observation.
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APPENDIX

THE HALF-NORMAL CASE

In the half-normal case, v - N(O,u2), u is distributed

2
as the absolute value of N(O,u ), v and u are

u

independent, and e = v-u. We wish to find the

distribution of u conditional on e

The joint density of u and v is the product of their

individual densities, since they are independent:

f(u,v) exp2 1 2 u>O (Al)
T U V~~- 21 VT > . (I

Making the transformation e = v-u, the joint density of

u and e is

f(u,) = 1 exp[u I  2 1 2(u 2 2+2ue)] (A2)
uv [ 2 u 2a v

The density of E is given by equation (8) of Aigner,

Lovell, and Schmidt (1977):

f(E) - (1-F) exp - 12] (A3)
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where e 2 ru + 2 An Cy , and F is the standard

normal cdf, evaluated at EX/a. Therefore, the

conditional density of u given * is the ratio of (A2)

to (A3), which we can write as

2 1 22
f(u l) 2 U,- eip2  2 - -

v U. 2 u>O, (A4)

where 2 = 2C2 2 With a little algebra, this simplifies to

f(u I'1 exp _ 2 ( ) u>0. (A5)

Except for the term involving I-F, this looks like the

density of N(p*,o2), with m. = -a ue/o. Finally, note
U

that F is evaluated at eX /a =-"./a*, and thus (1-F) is just

2
the probability that a N(A.,0

2 ) variable be positive.

2
Thus, (A5) is indeed the density of a N(A.,a

2 ) variable

truncated at zero'.

The Exponential Case

In the exponential case, v - N(O, 2 ) while u is independent

of v and has the one-parameter exponential density

1
f(u) = - exp (-u/au ) , u>.O (A6)

-9-
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with e= v-u, the joint density of u andE e becomes

f (u,e) 1 exP[ 1 2( + _1) e e~ 2] (M)

NE[r : 2 u ac7 u 20 jy
From Aigner, Lovell, and Schmidt (1977, p. 29), the density

of e is

21
1-F av

+ 2 exp [8)

where F is again the standard normal cdf, but evaluated at

A =/ca + c / a (A9)

Taking the ratio of (A7) to (A8) and simplifying,

f (U ) =-1- 71- [ - -L + a A ,u>O. (AlO)It 1-F exp 2u~ 2 v

But this is just the density of a N(-a A, a 2 variable,
v V

truncated at zero.
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